The ability to quickly and intuitively edit digital content has become increasingly important in our everyday life.However,existing edit propagation methods for editing digital images are typically based on optimization with high computational cost for large inputs.Moreover,existing edit propagation methods are generally inefficient and highly time-consuming.Accordingly,to improve edit efficiency,this paper proposes a novel edit propagation method using a bilateral grid,which can achieve instant propagation of sparse image edits.Firstly,given an input image with user interactions,we resample each of its pixels into a regularly sampled bilateral grid,which facilitates efficient mapping from an image to the bilateral space.As a result,all pixels with the same feature information(color,coordinates)are clustered to the same grid,which can achieve the goal of reducing both the amount of image data processing and the cost of calculation.We then reformulate the propagation as a function of the interpolation problem in bilateral space,which is solved very efficiently using radial basis functions.Experimental results show that our method improves the efficiency of color editing,making it faster than existing edit approaches,and results in excellent edited images with high quality.
For protecting the copyright of a text and recovering its original content harmlessly,this paper proposes a novel reversible natural language watermarking method that combines arithmetic coding and synonym substitution operations.By analyzing relative frequencies of synonymous words,synonyms employed for carrying payload are quantized into an unbalanced and redundant binary sequence.The quantized binary sequence is compressed by adaptive binary arithmetic coding losslessly to provide a spare for accommodating additional data.Then,the compressed data appended with the watermark are embedded into the cover text via synonym substitutions in an invertible manner.On the receiver side,the watermark and compressed data can be extracted by decoding the values of synonyms in the watermarked text,as a result of which the original context can be perfectly recovered by decompressing the extracted compressed data and substituting the replaced synonyms with their original synonyms.Experimental results demonstrate that the proposed method can extract the watermark successfully and achieve a lossless recovery of the original text.Additionally,it achieves a high embedding capacity.