A modified MK model combined with ductile fracture criterion(DFC-MK model) is proposed to compute the forming limit diagrams(FLDs) of 5A06-O aluminum alloy sheet at different temperatures.The material constant(C) of ductile fracture criterion and initial thickness imperfection parameter(f0) at various temperatures are determined by using a new computing method based on wide sheet bending test.The FLDs at 20 and 200 °C are calculated through the DFC-MK model.The DFC-MK model,which includes the influence of through-thickness normal stress,is written into the subroutine VUMAT embedded in Abaqus/ Explicit.The cylindrical cup hydroforming tests are carried out to verify the model.The results show that compared with experimental observations,the predicted FLDs based on DFC-MK model are more accurate than the conventional MK model;the errors between the simulations and experiments in warm hydroforming are 8.23% at 20 °C and 9.24% at 200 °C,which verify the effectiveness of the proposed model.
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
Experimental and numerical analyses for the effect of the thickness of gap generator blank(GGB) on the formability of the outer blanks were investigated. The thickness of the GGB has the greatest impact on the thinning of the lowest blank. In addition, the friction at different regions and the additional interlayer contacts can also affect the thinning of different regions as well as increase the punch force. This work will enhance the understanding of simultaneous multi-layered blanks forming and will help the composite design engineers to tailor requirement-specific hybrid parts such as fiber metal laminates(FMLs) and functionally graded structures(FGSs) for hi-tech applications.