您的位置: 专家智库 > >

国家自然科学基金(31171187)

作品数:7 被引量:23H指数:3
相关作者:徐辰武胡文明徐扬张恩盈王伟更多>>
相关机构:扬州大学苏州大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:农业科学生物学更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 4篇农业科学
  • 3篇生物学

主题

  • 2篇性状
  • 2篇数量性状
  • 2篇数量性状位点
  • 2篇位点
  • 2篇基因
  • 1篇等位
  • 1篇等位变异
  • 1篇等位基因
  • 1篇一般配合力
  • 1篇遗传学
  • 1篇玉米
  • 1篇玉米株高
  • 1篇置换系
  • 1篇上位性
  • 1篇上位性效应
  • 1篇统计遗传学
  • 1篇配合力
  • 1篇染色体
  • 1篇染色体片段置...
  • 1篇株高

机构

  • 3篇扬州大学
  • 1篇苏州大学

作者

  • 2篇胡文明
  • 2篇徐辰武
  • 1篇张恩盈
  • 1篇徐扬
  • 1篇汤在祥
  • 1篇阚海华
  • 1篇王伟

传媒

  • 3篇Scienc...
  • 1篇中国农业科学
  • 1篇江苏农业学报
  • 1篇作物学报
  • 1篇The Cr...

年份

  • 1篇2016
  • 1篇2015
  • 1篇2014
  • 2篇2013
  • 2篇2012
7 条 记 录,以下是 1-7
排序方式:
等位基因功能差异的统计遗传学分析及应用被引量:3
2014年
等位基因的变异在各种生物中都是普遍存在的,并对基因的表达起着重要的调控作用。为了探索关联分析中品种数目(A)、平均等位基因多态信息含量(B)和候选基因总贡献率(C)对候选基因分析结果的影响,本研究采用经验贝叶斯(E-Bayes)方法探讨了上述因素对候选基因检测功效、遗传效应估计值的准确度和精确度以及假阳性出现频率等的影响。结果表明:(1)随着A、B和C的增加,候选基因的检测功效和效应估计值的准确度和精确度明显提高,假阳性出现的频率降低。(2)B对检测功效有显著的影响。在B值保持较高的水平时,即使品种的数目保持较低的水平以及候选基因的总贡献率较低时,平均检测功效也可达到80%;当B值为中等水平时,需要较大品种数目才能使平均统计功效超过80%;当B值较小时,品种数目即使达到100,3种贡献率水平下的统计功效最高也未达到50%。(3)B对候选基因效应估计值的准确度和精确度有显著的影响。随着B的增加,候选基因效应估计的准确度和精确度增加。(4)B因素对假阳性频率也有显著影响。在实例分析中检测到4个基因与稻米糊化温度显著关联。因此,在进行等位基因功能差异的统计遗传学分析时等位基因多态性是主要的影响因素,同时较多的品种数和较高的贡献率对候选基因的统计功效、效应估计值的准确度和精确度也有重要影响。
胡文明阚海华王伟徐辰武
关键词:等位变异
基于QTL定位分析策略的一般配合力遗传基础研究被引量:7
2013年
【目的】一般配合力(GCA)是评价亲本利用价值的重要指标。研究GCA的遗传基础及GCA相关QTL(QTLGCA)定位的可行性,为杂交育种提供技术参考。【方法】以双亲杂交衍生的重组自交系(RIL)为被测系、若干个随机选择的纯系为测验系的NCII交配设计以及QTL定位策略,系统研究GCA的遗传组成、影响QTLGCA定位的因素以及QTLGCA与性状本身QTL之间的关系。【结果】若性状受1对等位基因控制,RIL的GCA以及QTLGCA定位均与控制性状本身基因位点的加性效应、显性效应以及测验系等位基因的频率有关;若性状受2对加/显性的等位基因控制,则GCA估计及QTLGCA定位均与基因间是否连锁无关,其影响因素与性状受一个基因控制时相同;若性状受2对互作基因控制,GCA及QTLGCA定位均与测验系等位基因频率和性状本身QTL的主效应以及基因间互作效应有关,此外,GCA效应估计还与基因间是否连锁有关。【结论】无论是GCA效应估计还是QTLGCA定位,测验系等位基因频率和性状本身QTL效应大小都是重要的影响因素。此外,QTLGCA与性状本身QTL的差异还取决于性状的遗传结构以及QTL定位方法的选择。
胡文明徐扬张恩盈徐辰武
关键词:一般配合力QTL定位
A comparison of genomic selection methods for breeding value prediction被引量:8
2015年
Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large number of markers raise both statistical and computational issues in genomic selection (GS), and many methods have been developed for genomic prediction to address these problems, including ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased prediction, BayesA, BayesB, BayesCπ, and Bayesian LASSO. In this paper, these methods were compared regarding inference under different conditions, using real data from a wheat data set and simulated scenarios with a small number of quantitative trait loci (QTL) (20), a moderate number of QTL (60, 180) and an extreme number of QTL (540). This study showed that the genetic architecture of a trait should be fully considered when a GS method is chosen. If a small amount of loci had a large effect on a trait, great differences were found between the predictive ability of various methods and BayesCπ was recommended. Although there was almost no significant difference between the predictive ability of BayesCπ andBayesB, BayesCπ is more feasible than BayesB for real data analysis. If a trait was controlled by a moderate number of genes, the absolute differences between the various methods were small, but BayesA was also found to be the most accurate method. Furthermore, BayesA was widely adaptable and could perform well with different numbers of QTL. If a trait was controlled by an extreme number of minor genes, almost no significant differences were detected between the predictive ability of various methods, but RR-BLUP slightly outperformed the others in both simulated scenarios and real data analysis, thus demonstrating its robustness and indicating that it was quite effective in this case.
王欣杨泽峰徐辰武
基于R/qtl不同方法对玉米株高QTL定位结果的比较被引量:1
2013年
R/qtl是基于R语言的QTL分析专用作图软件。为了研究R/qtl不同作图方法在分析结果上的差异,采用1个玉米F2∶3家系的株高实际数据,分别按该软件提供的区间作图法(IM)、复合区间作图法(CIM)、二维扫描和多QTL拟合进行数据分析和结果比较。在株高性状上共定位到8个QTL,其中,IM法检测到7个,总共解释表型变异的54.57%,有3个QTL在4种算法中都能检测到,其位置、LOD值、置信区间以及贡献率估计4种算法分析结果基本一致。CIM法共检测到5个QTL,可解释总变异的27.66%,其中,位于第3染色体158 cM和222 cM的2个QTL在所有4种算法中都能检测到,第7染色体36 cM处的QTL首次被检测到,其余4个QTL与IM法检测到的相应QTL一致。二维QTL扫描共检测到7个QTL,累计贡献率达到54.97%,未检测到显著互作的QTL,除第6染色体33.5 cM处的QTL外,其他QTL与IM法检测到的一致。多QTL拟合只检测到3个QTL,累计贡献率为21.52%,也未检测到QTL间显著互作。以上分析结果表明:不同方法检测到的QTL无论在数量上还是在贡献率估计上均存在一定程度上的差异,但一些主要QTL在用不同方法分析中通常都能被发现。此外,本研究群体株高性状的遗传模式仅有主效应QTL,上位性QTL均未检测到。
胡文明汤在祥徐扬邓张泽徐辰武
关键词:QTL
Bin-based model construction and analytical strategies for dissecting complex traits with chromosome segment substitution lines被引量:1
2012年
Chromosome segment substitution lines have been created in several experimental models,including many plant and animal species,and are useful tools for the genetic analysis and mapping of complex traits.The traditional t-test is usually applied to identify a quantitative trait locus (QTL) that is contained within a chromosome segment to estimate the QTL's effect.However,current methods cannot uncover the entire genetic structure of complex traits.For example,current methods cannot distinguish between main effects and epistatic effects.In this paper,a linear epistatic model was constructed to dissect complex traits.First,all the long substituted segments were divided into overlapping small bins,and each small bin was considered a unique independent variable.The genetic model for complex traits was then constructed.When considering all the possible main effects and epistatic effects,the dimensions of the linear model can become extremely high.Therefore,variable selection via stepwise regression (Bin-REG) was proposed for the epistatic QTL analysis in the present study.Furthermore,we tested the feasibility of using the LASSO (least absolute shrinkage and selection operator) algorithm to estimate epistatic effects,examined the fully Bayesian SSVS (stochastic search variable selection) approach,tested the empirical Bayes (E-BAYES) method,and evaluated the penalized likelihood (PENAL) method for mapping epistatic QTLs.Simulation studies suggested that all of the above methods,excluding the LASSO and PENAL approaches,performed satisfactorily.The Bin-REG method appears to outperform all other methods in terms of estimating positions and effects.
TANG ZaiXiangXIAO JingHU WenMingYU BoXU ChenWu
关键词:染色体片段置换系数量性状位点上位性效应QTL分析
Framework for dissection of complex cytonuclear epistasis by a two-dimensional genome scan被引量:3
2012年
Epistasis between cytoplasmic and nuclear genes is the primary genetic component of complex quantitative traits.Genetic dissection of cytonuclear epistasis is fundamentally important to understand the genetic architecture of complex traits.In this study,a two-dimensional genome scan strategy was employed to evaluate the contribution of cytoplasm,quantitative trait loci (QTL),QTL×QTL interactions and QTL×QTL×cytoplasm interactions to the phenotypic variation.The p-value and parameter value for each genetic effect were calculated by multiple regression analysis.A stepwise approach was suggested to build confidence in candidate QTL on the basis of q-value estimation,false discovery rate calculation and Bonferroni adjustment.A fine-scale grid scan strategy was proposed for further analysis of peaks of interest.Plant height in maize was used as an example to illustrate the efficiency of the two-dimensional genome scan strategy.
TANG ZaiXiangHU ZhiQiuYANG ZeFengYU BoXU ChenWu
关键词:基因组扫描细胞核数量性状位点
A multivariate partial least squares approach to joint association analysis for multiple correlated traits被引量:3
2016年
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.
Yang XuWenming HuZefeng YangChenwu Xu
关键词:MULTIPLECORRELATEDTRAITSMULTILOCUSMULTIVARIATESQUARES
共1页<1>
聚类工具0