The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal stability analysis and error estimate for these two algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms.
Based on the finite element method(FEM), some iterative methods related to different Reynolds numbers are designed and analyzed for solving the 2D/3D stationary incompressible magnetohydrodynamics(MHD) numerically. Two-level finite element iterative methods, consisting of the classical m-iteration methods on a coarse grid and corrections on a fine grid, are designed to solve the system at low Reynolds numbers under the strong uniqueness condition. One-level Oseen-type iterative method is investigated on a fine mesh at high Reynolds numbers under the weak uniqueness condition. Furthermore, the uniform stability and convergence of these methods with respect to equation parameters R_e, R_m, S_c, mesh sizes h, H and iterative step m are provided. Finally, the efficiency of the proposed methods is confirmed by numerical investigations.