This work looks at a new type of electron linear accelerator. Compared with the traditional electron linac, it has only two main parts: a klystron and an accelerating tube, without the electron gun element. This new kind of linac could perform just like its predecesors but reduce cost and space. The preliminary design and simulation have been accomplished. In this paper, an overview discussion about the performance tests and some improvements to increase the beam current are presented.
Parametric X-ray Radiation (PXR) can be used as a novel, quasi-monochromatic energy-tunable and high-yield X-ray source. It is produced at the Bragg angle by a relativistic electron beam passing through the periodic structure of crystal materials. This article concerns the PXR experiment using low energy electrons (10 MeV) from NCEL (Novel Compact Electron-Linac). The difficulty of the experiment is to distinguish the PXR photons form the background. The design of the experiment relies mainly on the yield of PXR, the Bremsstrahlung background of the X-rays and the capability of the detector.