Red mud is a solid waste residue with alkaline nature(pH>12)-originating from the Bayer process in the production of alumina,which was probed in catalytic pyrolysis to determine its feasibility as a solid catalyst for bio-oil formulation.The red mud was characterized using X-ray fluorescence,XRD(X-ray diffraction),TG-DTG(thermogravimetry-derivative thermogravimetry),BET(surface area and pore size analyzer)measuring and testing techniques.Experiments of non-catalytic and catalytic pyrolysis of 40-60 mesh size corn stalk powder were channelled for bio-oil production in a fixed bed reactor.It was ascertained that adding different proportions of red mud had minute influence on bio-oil production rate and product distribution.The study signaled that liquid yield from the catalytic pyrolysis was lower than that from non-catalytic pyrolysis.Through a series of bio-oil characterization,it was encountered that the most obviously change in the bio-oil from catalytic pyrolysis was significant acidity reduction(pH>4).Meanwhile,the content of ketones and phenols was enhanced.Hence,the co-processing of agricultural waste and by-products alumina industry may offer an economical and environmentally friendly way of catalytic pyrolysis with abbreviating the red mud environmental effects.