The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on A1 current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.
Five-period AlGaSb/GaSb multiple quantum wells(MQW) are grown on a GaSb buffer.Through optimizing the AlSb nucleation layer,the low threading dislocation density of the MQW is found to be(2.50±0.91)×10~8 cm^(-2) in 1-μm GaSb buffer,as determined by plan-view transmission election microscopy(TEM) images.High resolution TEM clearly shows the presence of 90°misfit dislocations with an average spacing of 5.4 nm at the AlSb/GaAs interface,which effectively relieve most of the strain energy.In the temperature range from T = 26 K to 300 K,photoluminescence of the MQW is dominated by the ground state electron to ground state heavy hole(el-hhl) transition, while a high energy shoulder clearly seen at T76 K can be attributed to the ground state electron to ground state light hole(el-lhl) transition.
由于钠具有资源丰富和成本低廉的优势,钠离子电池再次受到科学界和工业界的广泛关注。发展低成本、性能优异的正极材料对于钠离子电池至关重要。本文通过向O3-Na_(0.90)[Cu_(0.22)Fe_(0.30)Mn_(0.48)]O_2材料中引入容易变价的Ni^(2+)得到一种不含Mn^(3+)的钠离子电池新型正极材料O3-NaCu_(1/9)Ni_(2/9)Fe_(1/3)Mn_(1/3)O_2,该材料具有127 m A·h/g可逆比容量和3.1 V平均放电电压。由该正极与硬碳球负极组装成全电池具有248 W·h/kg的理论能量密度,高达93%的能量转化效率和优异的循环性能。
本工作采用(氟磺酰)(三氟甲基磺酰)亚胺锂{Li[(FSO2)(CF3SO2)N],Li FTFSI}和聚氧乙烯(PEO)分别作为导电锂盐和聚合物主链,通过简单的溶液浇铸法制备了新型固态聚合物电解质(SPEs),并采取示差扫描量热(DSC)、热重(TGA)、线性扫描伏安(LSV)、交流阻抗(EIS)和恒电位直流(DC)极化等方法研究了Li FTFSI/PEO(EO/Li^+摩尔比为16)电解质的理化性质和电化学性质。结果表明,Li FTFSI/PEO电解质具有较高的室温离子电导率(σ≈10^(-5) S/cm),较高的氧化电位(4.63 V vs.Li/Li^+),并且耐热温度高达256℃。锂硫电池测试结果表明,该类SPEs展现出相对高的首周放电比容量(881 m A·h/g),有效地抑制了多硫离子的"穿梭效应",表现出良好的电池循环性能。