The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The generalized oscillator strength densities showed dramatic changes: some accessional minima occurred along with a remarkable enhancement in certain continuum-energy domains. The double-differential cross sections exhibit not only the same structures as the Bethe surface for moderate and large momentum transfers, but also a broadened enhancement for small momentum transfers.The single-differential cross sections exhibit a near-zero-energy-enhancement and prodigious multiple-shape resonances,depending on the continuum energy and the plasma screening length. These features are analogous to those of the photoionization cross section. These findings, for both types of cross section, can be explained by processes associated with continuum electrons, as long as the potential has a short-range character.
Based on first-principles calculations, the electronic and magnetic properties of undoped and Li-doped rutile TiO2 have been studied. The results demonstrate that a cation vacancy can arouse ferromagnetism in TiO2 and the magnetic moment mainly comes from p orbitals of O atoms around the Ti vacancy. However, the Ti vacancy under normal conditions is very difficult to form due to its high formation energy. Our calculations indicate that Li-doped TiO2 can reduce the formation energy while keeping the magnetism. The large magnetization energy indicates that Li-doped TiO2 is a promising room-temperature diluted magnetic semiconductor.
The static electric dipole polarizabilities of the ground state and n ≤ 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium. The plasma screening of the Coulomb interaction is described by the Debye-Hiickel potential and the interaction between the valence electron and the atomic core is described by a model potential. The electron energies and wave functions for both the bound and continuum states are calculated by solving the SchrSdinger equation numerically using the symplectic integrator. The oscillator strengths, partial-wave, and total static dipole polarizabilities of the ground state and n ≤ 3 excited states of the lithium atom are calculated. Comparison of present results with those of other authors, when available, is made. The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing, unlike that for hydrogen-like ions, especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D = 10.3106a0, which is associated with the Cooper minima.