An a posteriori error estimator is obtained for a nonconforming finite element approximation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error estimator are rigorously proved and are verified by numerical examples.
This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.
In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.
In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-HiUiard-type equation as a model problem.
In this paper, local a priori, local a posteriori and global a posteriori error estimates are obtained for TQC9 element for the biharmonic equation. An adaptive algorithm is given based on the a posteriori error estimates.