您的位置: 专家智库 > >

国家自然科学基金(60875073)

作品数:3 被引量:7H指数:2
相关作者:李搏邹龙庆李垒王巍贾培发更多>>
相关机构:重庆邮电大学清华大学更多>>
发文基金:国家自然科学基金国家科技重大专项更多>>
相关领域:电子电信自动化与计算机技术经济管理更多>>

文献类型

  • 3篇期刊文章
  • 1篇会议论文

领域

  • 2篇电子电信
  • 2篇自动化与计算...
  • 1篇经济管理

主题

  • 1篇半导体
  • 1篇半导体工艺
  • 1篇半导体工艺设...
  • 1篇SELECT...
  • 1篇TS
  • 1篇UNSUPE...
  • 1篇USING
  • 1篇WORDS
  • 1篇AN_EMP...
  • 1篇BOLTZM...
  • 1篇DEPEND...
  • 1篇DOMAIN
  • 1篇EDA
  • 1篇EVOLUT...
  • 1篇T-C
  • 1篇TRAIN
  • 1篇GROUPI...
  • 1篇SENTIM...

机构

  • 1篇清华大学
  • 1篇重庆邮电大学

作者

  • 1篇贾培发
  • 1篇王巍
  • 1篇李垒
  • 1篇邹龙庆
  • 1篇李搏

传媒

  • 1篇电子科技大学...
  • 1篇Scienc...
  • 1篇Tsingh...

年份

  • 1篇2012
  • 2篇2010
  • 1篇2009
3 条 记 录,以下是 1-4
排序方式:
Duple-EDA and sample density balancing被引量:2
2009年
In this paper, a new method is proposed to overcome the problem of local optima traps in a class of evolutionary algorithms, called estimation of distribution algorithms (EDAs), in real-valued function optimization. The Duple-EDA framework is proposed in which not only the current best solutions but also the search history are modeled, so that long-term feedback can be taken into account. Sample Density Balancing (SDB) is proposed under the framework to alleviate the drift phenomenon in EDA. A selection scheme based on Pareto ranking considering both the fitness and the historical sample density is adopted, which prevents the algorithm from repeatedly sampling in a small region and directs it to explore potentially optimal regions, thus helps it avoid being stuck into local optima. An MBOA (mixed Bayesian optimization algorithm) version of the framework is implemented and tested on several benchmark problems. Experimental results show that the proposed method outperforms a standard niching method in these benchmark problems.
CAI YunPengXU HuaSUN XiaoMinJIA PeiFaLIU ZeHua
基于SEMI标准的半导体工艺设备功能仿真系统设计被引量:3
2012年
设计实现了一个基于SEMI标准的半导体工艺设备仿真平台,该平台具有通用可配置特性。在该平台的基础上,构建了一套基于SEMI标准的气路功能仿真系统,该气路仿真系统包含了功能层、逻辑层和外部通信接口层,既能满足单独设备的功能仿真需求,也能对整个系统的功能进行仿真验证。该系统实现了对物理气相沉积(PVD)系统中,气路中阀门的闭合动作及气流变化等的实时仿真分析。
王巍邹龙庆徐华李搏贾培发李垒
关键词:半导体工艺设备
An Empirical Study of Unsupervised Sentiment Classification of Chinese Reviews被引量:2
2010年
This paper is an empirical study of unsupervised sentiment classification of Chinese reviews. The focus is on exploring the ways to improve the performance of the unsupervised sentiment classification based on limited existing sentiment resources in Chinese. On the one hand, all available Chinese sentiment lexicons - individual and combined - are evaluated under our proposed framework. On the other hand, the domain dependent sentiment noise words are identified and removed using unlabeled data, to improve the classification performance. To the best of our knowledge, this is the first such attempt. Experiments have been conducted on three open datasets in two domains, and the results show that the proposed algorithm for sentiment noise words removal can improve the classification performance significantly.
翟忠武徐华贾培发
Grouping Product Features Using Semi-supervised Learning with Soft-constraints
<正>In opinion mining of product reviews,one often wants to produce a summary of opinions based on product feat...
Zhongwu Zhai~1
文献传递
共1页<1>
聚类工具0