In this paper, we investigate the model checking problem for a general linear model with nonignorable missing covariates. We show that, without any parametric model assumption for the response probability, the least squares method yields consistent estimators for the linear model even if only the complete data are applied. This makes it feasible to propose two testing procedures for the corresponding model checking problem: a score type lack-of-fit test and a test based on the empirical process. The asymptotic properties of the test statistics are investigated. Both tests are shown to have asymptotic power 1 for local alternatives converging to the null at the rate n-r, 0 ≤ r 〈 1/2. Simulation results show that both tests perform satisfactorily.
In this paper, we investigate the variable selection problem of the generalized regression models. To estimate the regression parameter, a procedure combining the rank correlation method and the adaptive lasso technique is developed, which is proved to have oracle properties. A modified IMO (iterative marginal optimization) algorithm which directly aims to maximize the penalized rank correlation function is proposed. The effects of the estimating procedure are illustrated by simulation studies.