The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs,trading-off between the precision,speed,and size of the chip.In order to ensure the linearity of the DAC,a double Centro symmetric current matrix is designed by the Q2 random walk strategy.To achieve better dynamic performance,a latch is added in front of the current switch to change the input signal,such as its optimal cross-point and voltage level.For a 12bit resolution,the converter reaches an update rate of 300MHz.
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor flip-around architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12mm^2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.