电力系统发生短路故障时,巨大的短路能量注入到金属氧化物限压器(metal oxide voltage limiter,MOV)上,导致其温度快速升高。为保证MOV的可靠运行,延长其使用寿命,需要尽快散热降温。因此,MOV冷却结构的设计和了解MOV的温度分布非常重要。为此,提出了一种新型MOV冷却结构,并基于传热学的理论建立了MOV三维温度场有限元法计算模型。用有限元计算软件ANSYS系统地计算分析了MOV冷却通道的直径、条数和分布等几何量对于通风道内传热特性的影响。结果表明:这种新型冷却结构的MOV要比传统MOV的散热能力更好,MOV散热能力随冷却通道直径不同而变化,通道直径存在约10 mm的最优值,此时冷却结构散热效果较好,4条冷却通道比2条冷却通道具有更好的散热效果。
漏磁效应对永磁饱和型故障限流器(permanent-magnet-biased saturation based fault current limiter,PMFCL)的动态特性具有重要影响。针对一种直线式PMFCL的磁拓扑,以铁心磁通的工作零点作为分界阐明了其2个阶段的限流机理,指出铁心磁通自过零反向后将发生畸变,永磁体不再参与限流过程。基于磁场分割原理实现2类等效磁路模型中总漏磁导和漏磁系数的计算,针对拟圆环截面磁通管的漏磁导,提出基于曲线拟合而改变积分变量的求解方法。在Matlab/Simulink环境下建立了考虑漏磁效应的PMFCL仿真模型,分别与小电流和大电流工况的实验结果进行对比,验证了建模方法的有效性。
为适应大容量应用需求,针对一种直线式永磁饱和型故障限流器(permanent-magnet-biased saturation based fault current limiter,PMFCL)磁拓扑结构,基于等效磁路法建立了以饱和深度比、电感比与电感和为基本变量的结构参数设计算法,并通过分析铁心上工作点的变化规律,将PMFCL结构参数优化转化为对3个独立变量的优化,即对铁心i-Be曲线上3个关键点的优化问题,为获得最优结构参数奠定了算法基础。将参数优化算法应用于110 kV系统设计实例,并基于Maxwell-2D软件建立了直线式PMFCL的场–路耦合仿真模型,验证了算法及优化结构参数的有效性。