The behaviors of different inhibitors including their composition, size, distribution, coalescence and coarsening were experimen-tally studied. It was observed that during secondary recrystallization of the tested steel, the key inhibition effect was produced by Cu2S and AlN, but not MnS. With the increase of temperature, the size distributions of AlN and Cu2S were changed to some extent. However, signifi-cant changes in particle size were not observed. The initial temperature of abnormal growth was determined by measuring the evolution of particle sizes and their distribution density during heat treatment. AlN and Cu2S are the dominant inhibitors and both are necessary, which is verified by calculating the Zener factor.
The precipitation behaviors of MnS particles at 900℃ in a hot deformed Fe-3%Si alloy were observed statistically. The ratio of MnS particles on dislocations and in grain boundaries was calculated based on a model concerning the second phase precipitation in supersaturated solid solution. It was indicated that the precipitation of MnS particles on dislocations prevailed. The coarsening process of MnS particles in grain boundaries determined the boundary mobility during the secondary recrystallization. However, the density difference of precipitated MnS particles inside the grains on both sides of a boundary will determine the migration direction of the boundary as well, besides the grain size effect. It was observed that the densities of MnS particles in two neighboring grains were commonly different, and the boundary tended to move towards the area with lower particle density. The factors, e.g. dislocation densities in differently oriented grains will affect the density of precipitated particles, in which the Goss grains with higher particle density could grow more easily.