This paper considers a kind of strongly coupled cross diffusion parabolic system, which can be used as the multi-dimensional Lyurnkis energy transport model in semiconductor science. The global existence and large time behavior are obtained for smooth solution to the initial boundary value problem. When the initial data are a small perturbation of an isothermal stationary solution, the smooth solution of the problem under the insulating boundary condition, converges to that stationary solution exponentially fast as time goes to infinity.
For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.
In this paper,we study the one-dimensional motion of viscous gas with a general pres- sure law and a general density-dependent viscosity coefficient when the initial density connects to the vacuum state with a jump.We prove the global existence and the uniqueness of weak solutions to the compressible Navier-Stokes equations by using the line method.For this,some new a priori estimates are obtained to take care of the general viscosity coefficientμ(ρ)instead ofρ~θ.
The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the non-isentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
In this paper we establish the convergence of the Vlasov-Poisson-Boltzmann system to the incompressible Euler equations in the so-called quasi-neutral regime. The convergence is rigorously proved for time intervals on which the smooth solution of the Euler equations of the incompressible fluid exists. The proof relies on the relative-entropy method.