It is showed that, as the Mach number goes to zero, the weak solution of the compressible Navier-Stokes equations in the whole space with general initial data converges to the strong solution of the incompressible Navier-Stokes equations as long as the later exists. The proof of the result relies on the new modulated energy functional and the Strichartz's estimate of linear wave equation.
Semiclassical limit to the solution of isentropic quantum drift-diffusion model in semicon- ductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical drift-diffusion model. In addition, we also proved the global existence of weak solutions.
The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the non-isentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.
Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.
The quasi-neutral limit of time-dependent drift diffusion model with general sign-changing doping profile is justified rigorously in super-norm (i.e., uniformly in space). This improves the spatial square norm limit by Wang, Xin and Markowich.
The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditions. It is shown that the semiclassical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the global existence of weak solutions is proved.