BACKGROUND: Acute liver failure(ALF) is a serious clinical syndrome with high mortality. Sodium butyrate has been shown to alleviate organ injury in a wide variety of preclinical models of critical diseases. The aim of this study was to investigate the protective effect of sodium butyrate on ALF in rats.METHODS: All rats were randomly divided into control,model and sodium butyrate treatment groups. Except the control group, the rats were induced ALF animal model by subcutaneous injection of human serum albumin+D- galactosamine+lipopolysaccharide. After induction of ALF,the rats in the treatment group received sodium butyrate(500mg/kg) at 12-hour or 24-hour time point. Fourty-eight hours after ALF induction, the animals were sacrificed and samples were harvested. Serum endotoxin, high mobility group box-1(HMGB1), liver function parameters, tumor necrosis factoralpha(TNF-α) and interferon-gamma(IFN-γ) were measured.The expression of HMGB1 and nuclear factor-kappa B(NF-κB)p65 protein in liver tissue was detected by Western blotting. The histological changes of liver and intestine were examined. The survival duration was also observed.RESULTS: Serum endotoxin, alanine aminotransferase, HMGB1,TNF-α and IFN-γ were significantly increased and the liver histology showed more severe histopathological injury in the model group compared with the control group(P<0.05).Compared to the model group, sodium butyrate treatment significantly improved the histopathological changes in the liver and intestine, reduced serum endotoxin and inflammatory cytokines, suppressed HMGB1 and NF-кB p65 proteins in liver tissue, and prolonged the survival duration regardless of treatment at 12 hours or 24 hours after induction of ALF(P<0.05).CONCLUSIONS: Sodium butyrate protected the liver from toxin-induced ALF in rats. The mechanisms may be due to direct hepatoprotection and decreased intestinal permeability.
Fan YangLi-Kun WangXun LiLu-Wen WangXiao-Qun HanZuo-Jiong Gong
BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4(+)CD25(+)CD127(low) Treg cells among CD4(+) cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4(+)CD25(+)CD127(low) Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CIA(+) cells were found in liver failure patients than in CHB patients (82.6+/-20.1 mu g/L vs. 34.2+/-13.7 mu g/L; 4.55+/-1.34% vs. 9.52+/-3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection. Moreover, HMGB1 can weaken
BACKGROUND: The pathogenesis and progression of acute liver failure (ALF) are closely associated with intestinal endotoxemia because of the high permeability of the intestinal wall. Treatment with ethyl pyruvate (EP) has been shown to protect liver failure effectively. The current study aimed to explore the relationship between proinflammatory cytokines and intestinal permeability, and to investigate whether EP administration might prevent the release of multiple proinflammatory cytokines and decrease intestinal permeability and therefore, protect the liver from injury. METHODS: The ALF model was induced by D-galactosamine in rats. The rats were randomly divided into control (saline i.p.), model (D-galactosamine, 1.2 g/kg, i.p.), prevention [EP injection (40 mg/kg) 2 hours ahead of D-galactosamine] and treatment groups (EP injection 2 hours after D-galactosamine) Samples were obtained at 12 and 24 hours after ALF induction respectively. The histology of liver and intestinal tissue was accessed. Serum alanine aminotransferase, endotoxin, D(-) lactate, diamine oxidase (DAO), tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ) and high mobility group box-1 (HMGB1) were evaluated. The survival of rats was also recorded. RESULTS: The rats in model group showed severe damage to liver tissue and intestinal mucosa 12 and 24 hours after ALF induction. EP significantly improved liver or intestinal injury In addition, serum endotoxin, D(-)-lactate, DAO, TNF-α IFN-γ and HMGB1 levels were significantly increased in the model group compared with the control group. There was a positive correlation between intestinal permeability andproinflammatory cytokines. EP significantly reduced serum endotoxin, D(-)-lactate, DAO, TNF-α, IFN-γ and HMGB1 levels. The median survival time was significantly prolonged in both prevention and treatment groups (126 and 120 hours compared with 54 hours in the model group). CONCLUSIONS: EP has protective and therapeutic effects on intestinal mucosa. EP decreases intestinal permeability,
Li-Kun WangLu-Wen WangXun LiXiao-Qun HanZuo-Jiong Gong