The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.
For the traditional one-step formulations of using shell elements, the computations of the curvature variation and bending stiffness matrix were simplified by omitting the rotational DOFs (degrees of freedom) on the basis of initial flat blank and fully known final configuration. They were highly efficient but not suitable either for the forming processes with non-flat initial configurations or for one-step forward and multistep analyses. Thus, a one-step formulation based on the rotation-free BST (Basic Shell Triangle) element was presented. In this formulation, the penalty method was adopted to deal with contacts in the forming processes.
The miniaturization of products requires the mass production of microparts.The microforming can well meet this requirement.Due to the emergence of decreasing flow stress scale effect in the micro scale,the traditional forming process and theory may fail.Based on the crystal plasticity theory,upsetting tests of micro copper cylinders with different dimensions and grain sizes were simulated,and the decreasing flow stress scale effect was studied and discussed.Results show that with the decrease of billet dimensions,the flow stress is gradually decreased,and the decreasing flow stress scale effect is emerged;with the increase of grain size,the decreasing flow stress scale effect is more remarkable.It can also be seen that the decreasing flow stress scale effect can be well simulated with the crystal plasticity theory,and the necessary relevant information is provided for deeper understanding on this scale effect,as well as the design of processes and die structures in the microforming.
A non-local dislocation density based crystal plasticity model, which takes account of the microstrncture inhomogeneity, was used to investigate the micro-bending of metallic crystalline foils. In this model, both statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) are taken as the internal state variables. The strain gradient hardening in micro-bending of single-grained metal foils was predicted by evolution of GNDs. The predicted results were compared with the micro-hardness distribution of the previous micro-bending experiments of CuZn37 a-brass foils with coarse grains and fine grains. Comparison of the simulated dislocation densities distribution of SSDs and GNDs with the experimental results shows that different micro-hardness distribution patterns of the coarse and fine grain foils can be attributed to the corresponding SSDs and GNDs distributions. The present model provides a physical insight into the deformation mechanism and dislocation densities evolution of the micro-bending process.
Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points.