Land surface temperature(LST) causes the phase change of water, links to the partitioning of surface water and energy budget, and becomes an important parameter to hydrology, meteorology, ecohydrology, and other researches in the high mountain cold regions. Unlike air temperature, which has common altitudinal lapse rates in the mountainous regions, the influence of terrain leads to complicated estimation for soil LST. This study presents two methods that use air temperature and solar position,to estimate bare LST with high temporal resolution over horizontal sites and mountainous terrain with a random slope azimuth. The data from three horizontal meteorological stations and fourteen LST observation fields with different aspects and slopes were used to test the proposed LST methods. The calculated and measured LST were compared in a range of statistical analysis, and the analysis showed that the average RMSE(root mean square error),MAD(mean absolute deviation), and R^2(correlation coefficient) for three horizontal sites were 5.09℃,3.66℃, 0.92, and 5.03℃, 3.52℃, 0.85 for the fourteen complex terrain sites. The proposed methods showed acceptable accuracy, provide a simple way to estimate LST, and will be helpful for simulating the water and energy cycles in alpine mountainous terrain.
YANG YongCHEN Ren-shengSONG Yao-xuanLIU Jun-fengHAN Chun-tanLIU Zhang-wen
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.