Compared with channel estimation method based on explicit training sequences,bandwidth is saved for those methods using superimposed training sequences,while it is wasted when Cyclic Prefix(CP) is added.In previous work of McLernon,the Mean Square Error(MSE) performance of Data-Dependent Superimposed Training(DDST) without CP for Single-Input Single-Output(SISO) system was analyzed under the assumption that the data-dependent sequence matrix was a circulant matrix and not interfered by others.In fact,for the system without CP,the data-dependent sequence matrix is not circulant any more and will be interfered.This paper derives the exact expression of MSE for the system without CP and also gives its extension to Multiple-Input Multiple-Output(MIMO) system without CP.
Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.
Shaojie QIAOXian WANGLu'an TANGLiangxu LIUXun GONG