NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.
The orthogonal signals of multi-carrier-frequency emission and multiple antennas receipt module are used in SIAR radar.The corresponding received echo is equivalent to non-uniform spatial sampling after the frequency diversity process.As using the traditional Fourier transform will result in the target spectral with large sidelobe,the method presented in this paper firstly makes the preordering treatment for the position of the received antenna.Then,the Bayesian maximum posteriori estimation with l2-norm weighted constraint is utilized to achieve the equivalent uniform array echo.The simulations present the spectrum estimation in angle precision estimation of multiple targets under different SNRs,different virtual antenna numbers and different elevations.The estimation results confirm the advantage of SIAR radar both in array expansion and angle estimation.
ZHAO GuangHui,SHI GuangMing & ZHOU JiaShe Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China,Xidian University,Xi’an 710071,China