In this article, the unified mathematical model for splash droplets and suspended mist of atomized flow was established, which classifies the atomized sources into the splash source and the suspended source. For the splash source, the Lagrangian method was used to simulate the random motion of splash water droplets, and for the suspended source the theory of air-water two-phase flow was used to simulate the mist flow moving in particle clouds. The rainfall intensity of the atomized flow was obtained by summarizing the rainfall intensities relative to the above two types of atomized sources. Both experimental data and prototype observation data were used for the verification of the mathematical model. For both the distribution of rainfall intensity, and the outer edge of the atomized flow, the simulation results are in agreement with the experimental data or prototype observation data.
Atomized flow is an unnatural two-phase flow produced while water discharges in water release structures. This flow might threaten the normal operation of hydraulic and hydroelectric installations owing to the unnatural and high-density rain as well as the unnatural and dirty mist. The splash region, the region with the highest rain intensity, hence should receive much attention during the design and operation of the hydraulic and hydroelectric installations. In this paper rain intensity distribution in the splash region of the atomized flow is investigated experimentally, and the method of random simulation is used to predict the rain intensity distribution in the splash region.
Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.
Natural rivers usually possess sand waves and sand bars. In this article, the rapid distortion theory was used to study the turbulent flow over sand waves. The results show that the pre-existing sheafing motion and upstream anisotropy of the turbulence flow would have significant effect on the turbulent structures, and hence the memory effect should be taken into consideration. Furthermore, the 2-D mathematical model was employed to simulate the unsteady flow around the Taiping Sand Bar in the lower reach of the Yangtze River and the time step effect on the unsteady flow simulation with the implicit scheme was discussed at the same time. The results show that the implicit scheme keeps effective until the time step reaches a certain number, and the calculated water levels and velocities are in agreement with the observed data.
A multi-objective optimal operation model of water-sedimentation-power in reservoir is established with power-generation, sedimentation and water storage taken into account. Moreover, the inertia weight self-adjusting mechanism and Pareto-optimal archive are introduced into the particle swarm optimization and an improved multi-objective particle swarm optimization (IMOPSO) is proposed. The IMOPSO is employed to solve the optimal model and obtain the Pareto-optimal front. The multi-objective optimal operation of Wanjiazhai Reservoir during the spring breakup was investigated with three typical flood hydrographs. The results show that the former method is able to obtain the Pareto-optimal front with a uniform distribution property. Different regions (A, B, C) of the Pareto-optimal front correspond to the optimized schemes in terms of the objectives of sediment deposition, sediment deposition and power generation, and power generation, respectively. The level hydrographs and outflow hydrographs show the operation of the reservoir in details. Compared with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), IMOPSO has close global optimization capability and is suitable for multi-objective optimization problems.