Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class Ⅱ MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler. ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class Ⅱ MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.
Lian WangDanling PanXihao HuJinyu XiaoYangyang GaoHuifang ZhangYan ZhangJuan LiuShanfeng Zhu
Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary structure prediction. There are some methods to predict β-turns based on machine learning techniques such as k-nearest method, neural networks and support vector machine. In this paper, we construct a classifier using double BP networks and put forward two novel methods to code amino acids in the second network. When trained and tested on different datasets, they achieve more accuracy than other coding methods.