The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chosen as the equivalent martingale measure.By the F-S decomposition,the expression of the locally risk minimizing strategy was presented.Finally,the local risk minimization was applied to index tracking and its relationship with tracking error variance (TEV)-minimizing strategy was obtained.
In this paper we study p-variation of bifractional Brownian motion. As an applica-tion, we introduce a class of estimators of the parameters of a bifractional Brownian motion andprove that both of them are strongly consistent; as another application, we investigate fractalnature related to the box dimension of the graph of bifractional Brownian motion.
Let θ∈^d be a unit vector and let X, X1, X2,…… be a sequence of i.i.d. Xd-valued random vectors attracted to operator semi-stable laws. For each integer n ≥1, let X1,≤……≤ Xn,n denote the order statistics of X1, X2,..., Xn according to priority of index, namely |(X1,nθ)|≥…≥ [(Xn,n,θ)1, where (., .) is an inner product on Rd. For all integers r ≥ 0, define by (r)Sn =∑n-r i=1Xi,n the trimmed sum. In this paper we investigate a law of the iterated logarithm and limit distributions for trimmed sums (r)Sn. Our results give information about the maximal growth rate of sample paths for partial sums of X when r extreme terms are excluded. A stochastically compactness of (r)Sn is obtained.