Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.