Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lanl2dz//6-31G*, are used to investigate the differences between four types of GG, 3′AG5′, 3′GA5′, and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3′GA5′ complex than the 3′AG5′ one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con- figuration transformation from such monoligand compound to the bi-ligand one is limited.