We derive a simple ionization rate formula for the ground state of a hydrogen atom in the velocity gauge under the conditions:ω〈〈1 a.u.(a.u.is short for atomic unit) and γ〈〈1(ω is the laser frequency and y is the Keldysh parameter).Comparisons are made among the different versions of the Keldysh-Faisal-Reiss(KFR) theory.The numerical study shows that with considering the quasi-classical(WKB) Coulomb correction in the final state of the ionized electron,the photoionization rate is enhanced compared with without considering the Coulomb correction,and the Reiss theory with the WKB Coulomb correction gives the correct result in the tunneling regime.Our concise formula of the ionization rate may provide an insight into the ionization mechanism for the ground state of a hydrogen atom.
Bauer recently presented a formula for the ionization rate of a hydrogen atom in a strong linearly polarized laser field[J.Phys.B 49145601(2016)].He started from the Keldysh probability amplitude in the length gauge and utilized Reiss’s method in the velocity gauge.Instead,according to the Reiss probability amplitude in the velocity gauge and Keldysh’s derivation for the length gauge,we derive a formula for the ionization rate of a ground-state hydrogen atom or a hydrogenlike atom in a strong linearly polarized laser field.We compare the numerical results of the total ionization rate and the photoelectron energy distribution calculated from our formula with the results from Keldysh,Reiss,and Bauer.We find that the apparent discrepancies in the ionization rate are caused not only by different gauges,but also by different analytical methods used to derive the ionization rate.
Quantum dynamics calculations for the title reaction H(2S) + S2(X3∑g) → SH(X2П) +S(3P) are performed byusing a globally accurate double many-body expansion potential energy surface [J. Phys. Chem. A 115 5274 (2011)]. The Chebyshev real wave packet propagation method is employed to obtain the dynamical information, such as reaction probability, initial state-specified integral cross section, and thermal rate constant. It is found not only that there is a reaction threshold near 0.7 eV in both reaction probabilities and integral cross section curves, but also that both the probability and cross section increase firstly and then decrease as the collision energy increases. The existence of the resonance structure in both the probability and cross section curves is ascribed to the deep potential well. The calculation of the rate constant reveals that the reaction occurring on the potential energy surface of the ground-state HS2 is slow to take place.
According to a novel electronic ground-state potential energy surface of H2O^+(X^4 A″),we calculate the reaction probabilities and the integral cross section for the titled reaction O^++ D2→OD^++ D by the Chebyshev wave packet propagation method.The reaction probabilities in a collision-energy range of 0.0 e V–1.0 e V show an oscillatory structure for the O^++ D2 reaction due to the existence of the potential well.Compared with the results of Martinez et al.,the present integral cross section is large,which is in line with experimental data.