针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型和匀速(constant velocity,CV)模型,建立了机动目标跟踪的状态方程和观测方程作为状态空间模型,并在此基础上,借鉴多重信号分类(multiple signal classification,MUSIC)算法谱函数修改了粒子滤波的似然函数,实现了对目标方位的实时动态跟踪。仿真结果表明,与传统子空间类跟踪算法和标准粒子滤波算法相比,本文方法跟踪精度更高,收敛速度更快,抗噪能力及鲁棒性更强,对轨迹交叉的多目标跟踪性能也更优。
In order to ease the pass-band response distortion of the matrix pre-filter,a simple approach for designing matrix spatial filter is proposed,which minimizes the sum of the k maximal distortion norm(k is the number of the constraint points)within the pass-band,while constraining the filter response within the stop-band.Considering the costly amount of calculation of the high-resolution methods,an algorithm with small amount of calculation based on matrix pre-filtering and subspace fitting using acoustic vector array(MF-VSSF)is proposed.Through joint processing of signal subspace of both pressure and particle velocity,the pre-filtering matrix and the signal subspace is decreased to M-dimensional(M is the number of array-element),hence reduces the time-consumption of the matrix pre-filter design and DOA searching.Simulation results show that,the method offers the same performance as MUSIC with pre-filtering,but has much lesser amount of calculation.Moreover,the designed prefilter can efficiently suppress the interference in the stop-band and improve the estimation and resolution performance of successive DOA estimators.
Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.