蛙跳(leapfrog)时间差分格式采用Asselin-Robert时间滤波方案去除计算解能够降低原始方程组的时间差分格式的计算精度,采用二阶Adams-Bashforth格式构造的欧拉前差方案可弥补蛙跳格式的不足,即:在不存在计算解的条件下去除滤波的影响,更大程度的保持方程组的计算准确性。本文基于NCAR CAM3.0(Community Atmosphere Model 3.0)完善的软件平台,将原模式的三时间层蛙跳时间差分方案修改为两时间层二阶Adams-Bashforth时间差分格式,对与重力波有关项使用中央差隐式处理,以此构建半隐式大气环流谱模式。利用动力检验的方法探讨模式对垂直分辨率的敏感性,从而寻找模式在较小计算代价下提高计算效果的可能。通过斜压波实验发现,提高垂直分辨率使模式具有更强的斜压波模拟能力,其模拟效果甚至已经与提高水平分辨率的效果相当,可以作为一种弥补模式运算效率不足的可行方案。
Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.
LIAN YiWANG JieTU GangREN HonglingSHEN BaizhuZHI KeguangLI ShangfengGAO Zongting
The characteristics of moisture transport and budget of widespread heavy rain and local heavy rain events in Northeast China are studied using the NCEP-NCAR reanalysis 6-hourly and daily data and daily precipitation data of 200 stations in Northeast China from 1961-2005. The results demonstrate that during periods with widespread heavy rain in Northeast China, the Asian monsoon is very active and the monsoonal northward moisture transport is strengthened significantly. The widespread heavy rainfall obtains enhanced water vapor supply from large regions where the water vapor mainly originates from the Asian monsoon areas, which include the East Asian subtropical monsoon area, the South China Sea, and the southeast and southwest tropical monsoon regions. There are several branches of monsoonal moisture current converging on East China and its coastal areas, where they are strengthened and then continue northward into Northeast China. Thus, the enhanced northward monsoonal moisture transport is the key to the widespread heavy rain in Northeast China. In contrast, local heavy rainfall in Northeast China derives water vapor from limited areas, transported by the westerlies. Local evaporation also plays an important role in the water vapor supply and local recycling process of moisture. In short, the widespread heavy rains of Northeast China are mainly caused by water vapor advection brought by the Asian monsoon, whereas local heavy rainfall is mainly caused by the convergence of the westerly wind field.
Under the background of global warming, summer (JJA) low temperature events in Northeast China had not occurred for about 15 yr since 1994, but one such event took place in 2009. By using the NCEP/NCAR reanalysis data, the 100-yr station temperature data at Harbin and Changchun, and the Hadley Center sea surface temperature (SST) data, this paper intends to reveal the cause, circulation background, and influencing factors of this event. Analysis of both horizontal and vertical circulations of a low-value system over Northeast China in summer 2009 during the low temperature event shows that anomalous activities of the Northeast China cold vortex (NECV) played the most direct role. A decadal cooling trend of - 0.8℃ (10 yr)-1 over 1999-2008 at Changchun and Harbin was found, which is obviously out-of-phase with the linear warming trend (0.2℃ (10 yr)-1) over 1961-2000 for Northeast China in response to the global warming. The previous winter North Pacific polar vortex (NPPV) area index, significantly positively related to the observed summer temperatures of Harbin and Changchun, was also in a significantly declining tendency. These provide favorable decadal backgrounds for the 2009 low temperature event. Different from the average anomaly field of 500-hPa height for summer 1994-2008 in Northeast China, in the summer of 2009, the Arctic Oscillation (AO) showed a strong negative phase distribution, and significant negative height anomalies dominated Northeast Asia, Aleutian Islands, and North Atlantic. Furthermore, the negative phase of North Pacific Oscillation (NPO) in the winter of 2008 was obviously strong, and it maintained in the spring of 2009. Meanwhile, the SSTA in the equatorial eastern-central Pacific Ocean in the winter of 2008 showed a La Nina phase, but the strength of the La Nina weakened obviously in the spring of 2009. The abnormally strong activities of NECV in June and July of 2009 were related to the disturbances of stationary waves that replaced the original
Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weather Forecast ERA-40 reanalysis data and monthly rainfall data from 79 stations in Northeast China. The results show that the interannual variation in rainfall over Northeast China is mainly dominated by a cold vortex in early summer (May-June) and by the East Asian summer monsoon in late summer (July-August). In early summer, corresponding to increased rainfall in Northeast China, an anomalous cyclonic anomaly tilted westward with height appears to the northwest and cold vortices occur frequently. In late summer, the rainfall anomaly is mainly controlled by a northward shift of the local East Asian jet stream in the upper troposphere and the northwest extension of the western Pacific subtropical high (WPSH) in the lower troposphere. The enhanced southwesterly anomaly in the west of the WPSH transports more moisture into Northeast China and results in more rainfall. In addition, compared with that in July, the rainfall in Northeast China in August is also influenced by a mid- and high-latitude blocking high over Northeast Asia.