The Majiang paleo-reservoir is a typical destroyed hydrocarbon reservoir, buried in carbonate strata of China's southern marine-facies. Field geological explorations, interpretations of seismic profiles and balanced cross-section restorations around this paleo-reservoir reveal that its formation and evolution have been restricted by multiphase tectonic movements of different intensities. A regional tectonic mechanism and model have been suggested for the formation and evolution of the Majiang paleo- reservoir. Geological field exploration has been carried out along three typical Silurian cross-sections and rock samples were tested in combination with water-rock interaction. Based on the result of cap tests, the planar distribution, the residual thickness, the erosion thickness and the preservation conditions, the Silurian mudstone cap is discussed around the Majiang paleo-reservoir. Combining the hydrodynamic conditions of its formation and evolution and its tectonic movements, we determined the fact that the thicker the cap is, the more resistant it is to hydrodynamic destruction. The multi-phase formation and destructive geological model of the paleo-reservoir is established through an overall analysis of multi- phase tectonic evolutions, cap developments, hydrodynamic conditions and solid mineral metallogenic ages measured by Rb-Sr, Pb and Sm-Nd isotope techniques.
The salt beds of the Middle-Lower Cambrian are widespread in the middle-west parts of the Central Uplift and adjacent areas, the Tarim Basin. This paper presents the results of seismic interpretation and drilling data analysis, which discovered that the salt beds were formed in an old geologic age, deeply buried, with relatively small scaled flowing and gathering and uneven distribution. As the regional detachment layers, the salt sequences considerably control the structural deformation of the up-salt Paleozoic, forming a series of hydrocarbon traps. In due course, the salt beds of the Middle-Lower Cambrian provide excellent cap rocks and trap conditions; thus the value of exploring hydrocabon reservoir in the target strata of the sub-salt Sinian- Cambrian is greatly increased. Research has shown that the salt-related structures of the Middle-Lower Cambrian in the area mainly exist in the form of salt pillow, salt roller, up-salt anticline, salt diapir, assemblage of the salt arch and up-salt fault-block, assemblage of basement fault and salt anticline, assemblage of the basement fault-block and salt dome, assemblage of salt detachment and fault-related fold, and assemblage of basement fault-block, salt arch and up-salt imbricated thrusts. The evolution and deformation mechanisms of the salt-related structures are controlled largely by basement faulting, compressional shortening, plastic flowing and gathering, superstratum gravitation, and up-salt faulting and detaching. They are distributed in rows or belts along basement faults or fault block belts.
Polygonal faults,generally distributed in fine-grained sediments,are layer-bound faults and are important in hydrocarbon accumulation.Using 3D seismic data,we analyzed the plane and profile features of faults developed in the Qingshankou formation of the Sanzhao sag.We identified these faults as having typical features of polygonal faults:1) layer-bound;2) normal faults;3) slight fault displacements and steep in dip angles;4) multi-directional in strike and 5) a single fault has a short horizontal extension.In addition,these faults intersect each other and form polygons.These polygonal faults are the result from the combined action of compaction,volume contraction and episodic hydraulic fracturing,conditions favorable for oil/gas accumulation.They are the dominant channels for migration of fluids in the Qingshankou mudstone,forming a large number of fault-lithologic oil traps.Polygonal faults improve reservoirs.
HE, Chunbo TANG, Liangjie HUANG, Deli SHI, Shangming