With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons and Ka/Ks analyses were carried out and our results showed that as the exons of high abundance are highly conserved, the minor and low exons also showed conservative characteristics in evolution. Our findings suggested that the exons with less abundance which constitute a large proportion of distinct species in transcriptome of organisms are under functional constraint and might play certain roles in enriching biological complexity in the evolution of organisms.
To evaluate the gene admixture on the current genetic landscape in Gansu Corridor (GC) in China, the upper part of the ancient Silk Road which connects the Eastern and Central Asia, we examined mitochondrial DNA (mtDNA) polymorphisms of five ethnic populations in this study. Using PCR-RFLP and sequencing, we analyzed mtDNA haplotypes in 242 unrelated samples in three ethnic populations from the GC region and two ethnic populations from the adjacent Xinjiang Uygur Autonomous Region of China. We analyzed the data in comparison with the previously reported data from Eastern, Central and Western Asia and Europe. We found that both European-specific haplogroups and Eastern Asian-specific haplogroups exist in the Gansu Corridor populations, while a modest matrilineal gene flow from Europeans to this region was revealed. The Gansu Corridor populations are genetically located between Eastern Asians and Central Asians, both of who contributed significantly to the maternal lineages of the GC populations. This study made the landscape of the gene flow and admixture along the Silk Road from Europe, through Central Asia, to the upper part of the Silk Road more complete.
YANG LiuQi, TAN SiJie, YU HaiJing, ZHENG BingRong, QIAO EnFa, DONG YongLi, ZAN RuiGuang & XIAO ChunJie Key Laboratory of Bioresources Conservation and Utilization & Human Genetics Center, Yunnan University, Kunming 650091, China