In this paper, the authors study the mapping properties of singular integrals on product domains with kernels in L(log+L)ε(Sm-1 × Sn-1) (ε = 1 or 2) supported by hyper-surfaces. The Lp bounds for such singular integral operators as well as the related Marcinkiewicz integral operators are established, provided that the lower dimensional maximal function is bounded on Lq(R3) for all q 1. The condition on the integral kernels is known to be optimal.
In this paper, the authors study the with non-isotropic dilation on product domains. LP-mapping properties of certain maximal operators As an application, the LP-boundedness of the corre- sponding nomisotropic multiple singular integral operator is also obtained. Here the integral kernel functions Ω belong to the spaces L(logL)a(E1 × E2) for some a 〉 0, which is optimal.
In this article, we prove the boundedness of commutators generated by BochnerRiesz operators below the critical index and BMO functions on the class of radial functions in Lp(Rn) with |1/p-1/2|〈(1+2α)/(2n).