This paper presents an FBCRI(feedback based compositional rule of inference)based novel path planning method to satisfy the requirements of real-time navigation,smoothness optimization and probabilistic obstacle avoidance.With local path-searching behaviors in regional ranges and global goal-seeking behaviors in holistic ranges,the method infers behavior weights using fuzzy reasoning embedded with feedback,and then coordinates the behaviors to generate new reference waypoints.In view of the deterministic decisions and the uncertain states of a UAV(unmanned air vehicle),chance constraints are adopted to probabilistically guarantee the UAV’s safety at a required level.Simulation results in representative scenes prove that the method is able to rapidly generate convergent paths in obstacle-rich environments,as well as highly improve the path quality with respect to smoothness and probabilistic safety.
基于快速扩展随机树(rapidly exploring random tree,RRT)的运动规划算法,通过随机采样的方式探索未知任务空间,具有概率完备性和较高的计算效率.该类算法在应用于无人机运动规划时必须对飞行距离、过程安全性和航路平滑度进一步优化.针对这一问题,首先对威胁环境、无人机运动学性能和探测能力建模,然后根据飞行特征设计了随机采样、威胁规避、路径可跟踪性以及全局与局部平滑性等优化策略,并构建快速平滑收敛RRT(quick and smooth convergence RRT,QS-RRT),最后以此为基础分别提出了面向已知和未知任务空间的无人机运动规划算法.仿真结果表明,该算法能够在保证飞行路径收敛性、安全性及其规划效率的基础上,有效缩短飞行距离,改善航路的可跟踪性和平滑度,增强在实际飞行过程中的可操作性.此外,该算法还易于在航路优化效果和规划效率之间权衡,增强了对不同规划任务需求的适应性.
<正>In this paper,the notion of near-controllability is established for nonlinear systems.This notion includes ...
TIE Lin,CAI Kai-Yuan School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics, Beijing 100191,P.R.China
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.