With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach<5 ppm and>99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect.
Yurong DongXiurong RenMeijun WangQiang HeLiping ChangWeiren Bao
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.