Apoptosis,or programmed cell death,is a complex,genetically-determined process involved in the development and maintenance of homeostasis in multicellular organisms.Dysregulation of apoptosis has been implicated in a number of diseases,including cancer and autoimmune disease.Thus,the investigation of apoptotic regulation has evoked considerable interest.Many apoptotic proteins have been shown to be post-translationally modulated,such as by protein cleavage,translocation,protein-protein interaction,and various post-translational modifications,which fall precisely within the range of proteomic analysis.Recently,contemporary proteomic technologies have achieved significant advances and have accelerated research in functional and chemical proteomics,which have been applied to the field of apoptosis research and have the potential to be a driving force for the field.This review highlights some of the major achievements in the application of proteomics in apoptosis research and discusses new directions and challenges for the near future.
WANG LiShun & CHEN GuoQiang Department of Pathophysiology,Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China
Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties.Recently,benzoxaboroles were widely applied as antifungal,antibacterial,antiviral,anti-parasite,and anti-inflammatory agents.This review covers the properties,synthetic methods and applications of benzoxaboroles in medicinal chemistry.
A novel pyrrolo-benzoxaborole,6-(pyrrol-1-yl)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole,was synthesized with 27%overall yield over six steps from 2-bromo-1-methyl-4-nitrobenzene as starting material.Its derivatization was achieved via Friedel-Crafts reaction catalyzed by anhydrous stannic chloride with various acyl chlorides giving 3-acyl-1-phenylpyrroles as the main products.
Hypoxia-inducible factor-1(HIF-1)is a key heterodimeric transcription factor for the cellular adaptive response to hypoxia,a common feature of the microenvironment in solid tumors.The transcriptional activity,protein stabilization,protein-protein interactions and cellular localization of HIF-1α,an oxygen-sensitive subunit of HIF-1,are mainly modulated by various post-translational modifications.Recently,we reported that polycomb chromobox 4(Cbx4)governs the transcriptional activity of HIF-1αby enhancing its sumoylation at K391 and K477,through which Cbx4 potentiates angiogenesis of hepatocellular carcinoma.This review summarizes the current knowledge of HIF-1α sumoylation and its roles in the pathogenesis of cancer.
LI JieXU YingJIAO HuiKeWANG WeiMEI ZhuCHEN GuoQiang