中药材品种复杂混乱给中药材流通监管造成不便,加强中药材及饮片质量监管、保证公众用药安全备受关注.本研究将二维DNA条形码技术应用于中药材流通监管领域,建立中药材二维DNA条形码流通监管体系.该体系包括DNA条形码序列获得与DNA条形码信息跨平台转换两大部分内容,以亚麻子、黑芝麻、火麻仁、蓖麻子和苘麻子5种药材共计109份样本为例研究建立该体系:依照中药材DNA条形码分子鉴定法获得待检样本DNA条形码序列;基于开源代码PHP QR Code的编码方式对实验所得DNA条形码序列进行编码,转换成二维码图片;使用移动终端扫描识读该二维码信息,并通过网页浏览器提交至中药材DNA条形码数据库获知鉴定结果.将二维码技术与DNA条形码技术相结合,为每个药材基原物种提供标准二维DNA条形码,有利于DNA条形码信息在不同平台间转换,为二维DNA条形码技术在实际流通监管工作中的应用提供理论基础,能有效实现对中药材流通的数字化监管,推动中药材流通监管现代化、国际化进程.
Malabaricone C (1), isolated from the seeds ofMyristicafragrans Houtt., belongs to a kind of diarylnonanoid compounds that are only found in Myristicaceae till now. In this study, biotransformation of 1 was investigated using rat hepatic microsomes for the first time and the main biotransformation product was elucidated as malabaricone B (2) according to the spectroscopic data. Further evaluation on human gastric cancer cell lines showed that the cytotoxic effects of malabaricone C and its metabolite malabaricone B were comparable to those of vinorelbine, with the values of IC50 of (42.62±3.10) and (19.80±1.70) μg/mL on NCI-N87, and (22.94±1.33) and (19.60±2.21) μg/mL on MGC803, respectively. Statistical analysis revealed that malabaricone B had significantly stronger cytotoxicity than the parent compound (P〈0.01 on NCI-N87 and P〈0.05 on MGC803), which may indicate a bioactivation of malabaricone C by hepatic microsomes. These results suggest that malabaricone C has a simple biotransformation pathway by hepatic microsomes and provide valuable information for further investigation on both the parent compound and its biotransformation product as anti-gastric cancer agents or lead compounds.