Polymer-controlled mineralization in aqueous solution or in a mixed solvent media, as well as its com-bination with the interface of air-water can lead to the formation of minerals with unique structures and morphologies, which sheds light on the possibility to mimic the detailed structures of the natural min-erals.
One-dimensional magnetic Ni Co alloy microwires with different microstructures and differently shaped building blocks including spherical particles,multilayer stacked alloy plates,and alloy flowers,have been synthesized by an external magnetic field-assisted solvothermal reaction of mixtures of cobalt(II)chloride and nickel(II)chloride in 1,2-propanediol with different NaOH concentrations.By adjusting the experimental parameters,such as precursor concentration and Ni/Co ratio,Ni Co alloy chains with uniform diameters in the range 500 nm to 1.3μm and lengths ranging from several micrometers to hundreds of micrometers can be obtained.A mechanism of formation of the one-dimensional assemblies of magnetic NiCo microparticles in a weak external magnetic fi eld is proposed.
Highly hierarchical structures of silver indium tungsten oxide(AgIn(WO_(4))_(2))mesocrystals can be rationally fabricated via the microwave-assisted synthesis method by tuning the initial concentrations of the precursors.Photoluminescence spectra of hierarchical AgIn(WO_(4))_(2) mesocrystals were measured to investigate the correlation between the morphology,pressure,and temperature and their luminescence properties.The materials showed interesting white emission when excited by visible light of wavelength 460 nm.AgIn(WO_(4))_(2) materials having different morphologies displayed notable differences in photogenerated emission performance.The emission was strongly correlated with the surface nanostructures of outgrowths,with larger amounts of outgrowths leading to stronger emission intensities.The pressure-and temperature-dependent photoluminescence properties of these materials have also been investigated under hydrostatic pressures up to 16 GPa at room temperature and in the temperature range from 10 to 300 K.
Bo HuLi-Heng WuZhi ZhaoMeng ZhangShao-Feng ChenShu-Juan LiuHong-Yan ShiZe-Jun DingShu-Hong Yu
Uniform hollow Au@TiO2 core shell spheres with moveable Au nanoparticles were synthesized based on templating against Au@carbon spheres.The diameter of the shell of the Au@TiO2 spheres could be controlled by adjusting the Ti(OC4H9)4 hydrolyzing reaction time or the ratio of Ti(OC4H9)4 to Au@carbon spheres,and the shell thickness of the core-shell spheres can be varied from 25 nm to 40 nm.As prepared hollow Au@TiO2 core-shell spheres display enhanced photocatalytic activity in the initial stage of photocatalytic degradation of methylene blue compared with pure hollow TiO2 spheres and the commercial photocatalyst TiO2(P-25).