In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
By taking a rolling-spring isolation system as the study object, the effects of the non-uniform distribution of rolling friction coefficient on its isolation performance were analyzed by a compiled computer program. The results show that the errors associated with the structural maximum relative displacement, acceleration and residual displacement due to ignoring the friction variability sequentially grow. This rule is weakened by the spring action, however, the unreasonable spring constant will cause sympathetic vibration. Under the condition of large friction variability, in the calculation of the structural maximum relative displacement and acceleration, the friction variability should be considered. When the structural residual displacement is concerned, the variability of rolling friction coefficient should be fully considered regardless of the friction variability.