The seasonal and interannual variations of the vertical distribution of the Kuroshio velocity and its formative mechanism were studied by analyzing the Global Ocean Reanalysis Simulation 2 (GLORYS2) dataset in the Pollution Nagasaki (PN) section (126.0°E-128.2°, at depths less than 1000 m). The results indicated that: 1) the maximum transport in the PN section occurs in summer, followed by spring, and the minimum transport occurs in fall and winter; the maximum velocities are located at the subsurface in both winter and summer and velocities are relatively larger and at a shallower depth in summer; and the velocity core is located at the surface in spring and fall. The isopycnic line has a clear depression around the Kuroshio axis in winter. The depth of maximum velocity and the zero horizontal density gradients both exhibit substantial seasonal and interannual variations, and the interannual variations are larger. 2) The distributions of velocity and density are in accordance with the therma~ wind relation. Although Kuroshio transport is determined by the large-scale wind field and mesoscale motion in the Pacific Ocean; local heat flux and thermohaline circulation influence the density field, modify the vertical structure of the Kuroshio velocity, and adjust the allocation of water fluxes and nutrients transport. 3) Shelf-water offshore transport into the Kuroshio upper layer induced by southwest monsoons might contribute to the maximum velocity up to the surface in summer. Nonlinear and nongeostrophic processes are not considered in the present study, and the thermal wind relation accounts for part of the vertical structure of the Kuroshio velocity.