GECISM(GEneral computer immune system model)是基于规则匹配检测的计算机免疫系统,免疫识别规则对“自我”和“非我”特征的表征能力直接影响到GECISM的性能,所以挖掘高效免疫识别规则的是GECISM的一个重要研究内容。改进后的Apriori算法以系统调用序列为数据源,从“自我”集和“非我”集中计算出频繁谓词,进而产生免疫识别规则。这些规则反映了“自我”和“非我”的内在特征,是GECISM进行“非我”检测的判据。
GECISM(GEneral Computer Immune System Model)是基于规则匹配检测的计算机免疫系统,免疫识别规则对“自我”和“非我”特征的表征能力直接影响到GECISM的性能,所以挖掘高效免疫识别规则是GECISM的一个重要研究内容.改进后的Apriori算法以系统调用序列为数据源,从“自我”集和“非我”集中计算出频繁谓词,进而产生免疫识别规则.这些规则反映了“自我”和“非我”的内在特征,是GECISM进行“非我”检测的依据.