您的位置: 专家智库 > >

温学飞

作品数:1 被引量:0H指数:0
供职机构:东南大学数学系更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇理学

主题

  • 1篇MULTI
  • 1篇SCHR
  • 1篇SCHROD...
  • 1篇VARIAT...
  • 1篇COUPLE...
  • 1篇-B

机构

  • 1篇东南大学

作者

  • 1篇温学飞
  • 1篇李玉祥

传媒

  • 1篇Journa...

年份

  • 1篇2012
1 条 记 录,以下是 1-1
排序方式:
Existence of multi-bump solutions for coupled Schr dinger systems
2012年
The Schrodinger equation -△u+λ2u=|u|2q-2u has a unique positive radial solution Uλ, which decays exponentially at infinity. Hence it is reasonable that the Schrolinger system -△u1+u1=|u1|2q-1u1-εb(x)|u2|1|u1|q-1u1,-△u2+u2=|u2|2q-2u2-εb(x)|u1|1|u2|q-1u2 has multiple-bump solutions which behave like Uλ in the neighborhood of some points. For u=(u1,u2)∈H1(R3)×H1(R3), a nonlinear functional Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)|u1|q|u2|qdx,is defined,where I1(u1)=1/2||u1||2-1/2q∫R3|u1|2qdx and I2(u2)=1/2||u2||2ω-1/2q∫R3|u2|2qdx. It is proved that the solutions of the system are the critical points of I,. Let Z be the smooth solution manifold of the unperturbed problem and TzZ is the tangent space. The critical point of I is rewritten as the form of z + w, where w ∈ (TzZ)⊥. Using some properties of Iε, it is proved that there exists a critical point of I, close to the form which is a multi-bump solution.
李玉祥温学飞
共1页<1>
聚类工具0