If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t) = Au (t) + Bx( t) + f( t, u(t) ), 0≤t ≤ T with nonlocal initial condition u(0) = u0 + g(u) is discussed in Banach space X. The results show that if semigroup S(t) is strongly continuous, the functionsf and g are compact and the control B is bounded, then it is nonlocally controllable. The nonlocal controllability for the above nonlocal problem is also studied when B and W are unbounded and the semigroup S(t) is compact or strongly continuous. For illustration, a partial differential equation is worked out.
In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.
We discuss the existence results of the parabolic evolution equation d(x(t)+g(t,x(t)))/dt+A(t)x(t)=f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f,g are continuous. We get the theorem of existence of a mild solution, the theorem of existence and uniqueness of a mild solution and the theorem of existence and uniqueness of an S-classical (semi-classical) solution. We extend the cases when g(t)=0 or A(t)=A.