针对无人机在光伏组件巡检任务中红外故障图像识别准确率低、检测速度慢的问题,提出一种特征增强的YOLO v5s故障检测算法。首先对损失函数进行优化,将原有的回归损失计算方法由GIOU(generalized intersection over union)改为功能更加强大的EIOU(efficient intersection over union)损失函数,并自适应调节置信度损失平衡系数,提升模型训练效果;随后,在每个检测层前分别添加InRe特征增强模块,通过丰富特征表达增强目标特征提取能力。最后,用创建的红外光伏数据集进行对比验证。实验结果表明:本文方法均值平均精度(mean average precision,mAP)为92.76%,检测速度(frame per second,FPS)达到42.37 FPS,其中热斑、组件脱落两种故障类型平均精度分别为94.85%、90.67%,完全能够满足无人机自动巡检的需求。