为了在薄埋氧层SOI衬底上实现超高耐压LDMOS铺平道路,提出了一种具有P埋层(BPL)的薄埋氧层SOI LDMOS结构,耐压1200V以上。该BPL SOI LDMOS在传统SOI LDMOS的埋氧层和N型漂移区之间引入了一个P型埋层。当器件正向截止时,N型漂移区与P埋层之间的反偏PN结将承担器件的绝大部分纵向压降。采用2维数值仿真工具Silvaco TCAD对BPL SOI LDMOS进行虚拟制造和器件仿真,结果表明该结构采用适当的参数既能实现1 280 V的耐压,将BOL减薄到几百纳米以下又可以改善其热特性。
A continuous and analytical surface potential model for SOI LDMOS, which accounts for automatic transitions between fully and partially-depleted statuses,is presented. The surface potential equation of the SOI de- vice is solved by using the PSP′s accurate algorithm of surface potential,and the front and back surface potentials are obtained analytically as a function of gate and drain voltage. The formulations of inversion charge and body charge under the fully-depleted state have been modified. The continuous and analytical DC model for SOl LD- MOS is given based on PSP. The comparisons between simulation and measurements indicate that this model can predict the DC characteristics of SOI LDMOS accurately.