The changes in photochemical features of Photosystem Ⅱ (PS Ⅱ) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigated in two hybrid rices (Oryza sativa L) cv. Liangyoupeijiu and cv. Shanyou 63 grown in the field. Liangyoupeijiu is a super high-yielding rice and Shanyou 63 has widely been planted in China in these years. The results indicate that soluble protein and chlorophyll in both cultivars degraded slowly at first and dramatically thereafter. The degradation speed of soluble protein in Shanyou 63 was faster than that in Liangyoupeijiu. Both Fv/Fm and qP decreased in parallel with leaf senescence, whereas qN fell at first and then rose. No significant change in excitation pressure (1-qP) was found before 89DAS but a sharply increase in both cultivars after it occurred. Excitation pressure rose more rapidly in Shanyou 63 than that in Liangyoupeijiu. The changes of RLS and RSS content exhibited the same trend as that of soluble protein content. A better linear correlation between RLS, RSS degradation and elevation of (1-qP) were shown in both cultivars. We suggest that the increase in PSⅡ excitation pressure possibly induced the quick senescence process in rice flag leaf. The high-yielding of Liangyoupeijiu may be due to its maintenance of stronger photosynthetic capacity, longer and more stable photosynthetic functional du-ration than that of Shanyou 63.
Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 concentration which was controlled by computer. As compared with rice at ambient 35 μmol/mol CO 2, the changes in photosynthetic rate at elevated CO 2 showed up_regulation ('IR72' and 'Tesanai 2'), stable (unchanged) in 'Guichao 2' and down_regulation type ('IIyou 4480'). Growth rate, panicle weight, integrated water use efficiency (WUE) calculated from Δ 13 C and the capacity of scavenging DPPH · (1,1_diphenyl_2_picrylhydrazyl) free radical were increased at elevated CO 2. An increment in total biomass was observed in three cultivars by elevated CO 2, with the exception of 'IIyou 4480'. Ratios of panicle weight/total biomass were altered to different extents in tested cultivars by elevated CO 2. When leaf segments were subjected to PEG osmotic stress, the electrolyte leakage rate from leaves grown at elevated CO 2 was less than that at 35 μmol/mol CO 2. Those intraspecific variations of rice imply a possibility for selecting cultivars with maximal productivity and high tolerance to stresses adapted to elevated CO 2 in the future.
Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.