目的探索识别汉语语音情绪的有效识别特征。方法采用基于Teager能量算子(TEO)的非线性特征,通过马尔可夫模型法(HMM),从汉语语音中识别平静和生气、欢快、悲伤4种情绪。结果文本有关时,5个非线性特征:基于频域TEO的Mel倒谱系数(nonlinear frequency domain Mel,NFD-Mel)、基于幅频特性的Mel倒谱参数(am plitude and frequency property Mel,AF-Mel)、基于微分幅频特性的Mel倒谱参数(am plitude and frequency property Mel of differential,DAF_Mel)、基于幅度调制的子带倒谱参数(AM-based SBCC,AM_SBCC)及基于幅频调制的子带倒谱参数(AMFM-based SBCC,AMFM-SBCC)的情绪识别性能全部高于Mel频率倒谱参数(Mel-scaled cepstrum coefficients,MF-CC)。文本无关时,NFD-Mel、AF-Mel、DAF-Mel的识别率高于MFCC,AM_SBCC、AM FM-SBCC的情绪识别率低于MFCC。结论结合非线性TEO的识别特征NFD-Mel、AF-Mel、DAF-Mel可有效提高情绪识别性能。
利用统计译码思想由LDPC(Low Density Parity Check)码校验矩阵通过矢量的线性组合构造出一个新的低密度校验矢量集合,并结合LDPC码并行比特翻转译码算法的环检测等特点的分析,提出了一种新的硬判决译码方案。仿真结果表明:改进算法在译码性能上接近BP算法,又保持了并行比特翻转算法迭代次数少的优点。