以天然生物大分子鞣花酸(EA)为有机配体,Zn(CH_3COO)_2·2H_2O为锌源,N-甲基吡咯烷酮为溶剂,在室温下经超分子自组装形成金属生物大分子配合物(Zn EA)前驱体,再经碳化制备了分级多孔碳球.研究了不同碳化温度和酸洗处理过程对多孔碳球的结构、形貌、比表面积和电化学储能的影响.结果表明,在惰性气氛下,1000℃下碳化制备的多孔碳材料(C-Zn EA-1000)的比表面积高达1238 m^2/g,最可几孔径分布约为4 nm;在6 mol/L KOH电解液中,扫描速率为5 m V/s时比电容为216 F/g.当扫描速率由5 m V/s增加到100 m V/s时,其比电容保持率为84.67%,显示了优异的倍率特性.在1 A/g的电流密度下,经过5000周充放电循环后比电容的损失仅为3%,具有优异的循环稳定性.
硼氢化物水解是导致直接硼氢化物燃料电池(DBFC)燃料效率下降的主要问题之一。将Co_3O_4用于DBFC阳极催化剂并通过镀银处理以降低水解反应。以CoCl_2·6H_2O为原料制备Co_3O_4,并通过银镜反应对其进行镀银处理,制得Co_3O_4@Ag。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱(EDS)对其进行物理表征,通过交流阻抗(EIS)、计时电流(CA)和电池测试对其电化学性能进行表征。结果表明,利用银镜反应成功地将Ag引入到催化剂体系,且Co_3O_4@Ag催化材料的含银量为2%。电化学测试表明,与Co_3O_4相比Co_3O_4@Ag具有更高的电催化活性。以Co_3O_4@Ag为阳极催化剂组装的燃料电池在室温下最大功率密度(55 m W·cm^(-2))和比容量(971 m A·h·g^(-1))较Co_3O_4分别提高了44.7%和32.1%,阳极催化剂性能得到显著提高。Ag在抑制水解反应的同时与Co_3O_4体现了协同催化的作用。