Compound SLXM-2, a derivative of cyclophosphamide (CTX), has shown potent growth-inhibitory effect on tumor cells with low toxicity in previous studies. However, the mechanism of its anti-tumor effect, especially on DNA damage, remains largely unclear. This study investigated the effect of SLXM-2 on the survival time of mice transplanted with the ascitie fluid-type hepatocarcinoma 22 (H22). We also evaluated the correlation between DNA damaging effect of SLXM-2 and its anti-tumor effect, and to probe the possible molecular mechanism for its effect on H22 cells. The results suggested that SLXM-2 significantly (P〈0.05) prolonged the survival time of mice bearing the ascitic fluid-type H22. Furthermore, SLXM-2 induced DNA damage in a dose-dependent manner in H22 cells. Further investigation revealed that SLXM-2 significantly (P〈0.05) up-regulated the expression levels of a series of DNA damage-related proteins, such as γH2AX (Ser139), p-Chkl (Ser296), p-Chk2 (Thr68), p-p53 (Ser15), p-p53 (Ser20) and p21, and down-regulated the expression of p-ATR (Ser428) and p-ATM (Ser1981). In conclusion, SLXM-2 showed a remarkable anti-tumor activity on ascitic fluid-type H22 cells, and its molecular mechanism is related to its DNA damaging effect.
1,2,5,6-Dianhydro-3,4-diacetyl-galactitol (DADAG), an alkylating sugar alcohol derivative, has been shown effective against tumor growth. In this research, we explored the effect of DADAG on angiogenesis in chick chorioallantoic membrane (CAM) model and on the proliferation and migration of human umbilical vein endothelial cells (HUVECs). We also studied the possible mechanism of the anti-angiogenesis effect of DADAG. The results showed that DADAG (100, 500 and 1000μnol/L) inhibited angiogenesis in CAM model dose-dependently. Sulforhodamine B (SRB) assay indicated that DADAG (45, 90, 135, 180 and 225 μmol/L) suppressed HUVECs proliferation in a dose-dependent and time-dependent manner. High Content Screening (HCS, Cellomics) assay, in which the influence of cell proliferation on migration could be excluded, indicated that DADAG (45, 135 and 225 ~xmol/L) directly inhibited the motility ofHUVECs. Immunofiuorescence assay suggested that DADAG inhibited angiogenesis possibly by decreasing vascular endothelial growth factor (VEGF) expression in HUVECs. Our findings reveal that DADAG show anti-angiogenic activity in vivo and in vitro, which is related to the downregulation of VEGF expression in endothelial cells.