In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.
The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.