您的位置: 专家智库 > >

宋学坤

作品数:3 被引量:0H指数:0
供职机构:西南交通大学理学院应用数学系更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 1篇递推
  • 1篇递推关系
  • 1篇多项式
  • 1篇正交
  • 1篇正交多项式
  • 1篇强相合
  • 1篇强相合性
  • 1篇相合性
  • 1篇经验BAYE...
  • 1篇渐近
  • 1篇函数
  • 1篇非参数
  • 1篇分布函数
  • 1篇贝叶斯
  • 1篇贝叶斯估计

机构

  • 3篇西南交通大学

作者

  • 3篇宋学坤

传媒

  • 1篇系统科学与数...
  • 1篇数学的实践与...
  • 1篇西南交通大学...

年份

  • 2篇1993
  • 1篇1991
3 条 记 录,以下是 1-3
排序方式:
经验Bayes分布函数的渐近最优速度
1993年
考虑空间(R,■,其中 R 是实直线,■是其 Borel 集的σ-代数.设(F_1,■),…,(F_n,■),(F,■)是 n+1对独立随机向量,且满足:(i)分布函数样本 F_1,…,F_n,F 是来自由(?)(α)确定的某个共同之先验分布,其中■(α)是(R,■)上参数为α(·)的 Dirichlet 过程,参数α(·)是(R,■)上的(σ-可加)非零有限测度;(ii)■=(X_(il),…,X_(in)),i=1,…,n 及■=(X_1,…,X_m)分别是来自分布函数 F_i,i=1,…,n 和 F 的随机样本.
宋学坤
关键词:分布函数贝叶斯估计
正交多项式回归理论中一个递推关系的证明
1993年
令(?)_k(t)表示 k 阶多项式,对于一组首项系数为1的多项式{(?)_k(t),k≥0}在t=0,1,…,(N-1)处正交,即(?)本文证明了它们有递推关系(?)_(k+1)(t)=(?)(t)(?)_k(t)-a_(k-1)(?)_(k-1)(t),其中a_(k-1)=k^2(N^2-k^2)/4(4k^2-1).
宋学坤
关键词:多项式正交递推关系
随机截断数据的非参数积累生存风险估计的强相合性
1991年
本文讨论了对于随机截断数据情形,积累生存风险 A(t)的 Nelson 估计和 Peterson 估计的强相合性,并得到其收敛速度为 O(n~.(-1/2)ln^(1/2)n)。
宋学坤
关键词:强相合性
共1页<1>
聚类工具0